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Abstract. Let S be a smooth projective surface over a field. We introduce
the notion of integral decomposability and, respectively, the opposite notion of
integral indecomposability, of the transcendental motive M2

tr(S). If the tran-
scendental motive is indecomposable rationally, then it is indecomposable inte-
grally. For example, M2

tr(S) is rationally, and hence integrally indecomposable
if S is an algebraic K3-surface whose motive is known to be finite-dimensional.
In the paper we prove that M2

tr(S) is integrally indecomposable when S is the
self-product of a smooth projective curve having enough morphisms onto an
elliptic curve with complex multiplication. This applies, for example, when S
is the self-product of the Fermat sextic in P2. Some refinement of the same
technique yields that M2

tr(S6) is integrally indecomposable, where S6 is the
Fermat sextic in P3. This suggests a conjecture saying that the transcenden-
tal motive of any smooth projective surface is integrally indecomposable. We
prove in the paper that if this motivic integral indecomposability conjecture is
true, and if the motive of any smooth projective surface is finite-dimensional,
then a very general cubic hypersurface in P5 is not rational.
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1. Introduction

A well-known conjecture in algebraic geometry says that a very general cubic

hypersurface in P5 is not rational. Since such fourfolds are unirational, the con-

jecture is a particular case of the Lüroth problem. Whereas the Lüroth problem

for cubic threefolds was solved by means of abelian invariants, [14], the numerous

attempts to develop an analog of the Clemens-Griffiths theory, which would be
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appropriate in dimension 4, have not achieved the desired result yet. The reason

for that is possibly rooted in the existence of phantom subcategories discovered

in [9], [10] and [18].

A well-known birational invariant of cycle-theoretic nature is the Chow group

of 0-cycles modulo rational equivalence on a variety over a non-algebraically

closed field. The recent developments along this line include the notion of CH0-

triviality introduced in [3]. In [36] Voisin proved that CH0-nontriviality is a

deformable property in families, and used this to prove the stable non-rationality

for the desingularization of a very general quartic double solid with at most seven

nodes. In [13] Colliot-Thélène and Pirutka used similar method to prove the

existence of not stably rational smooth quartic hypersurfaces in P4.

However, as we do not know a single example of a nonrational cubic fourfold in

P5, it is not clear how to use the deformation of CH0-nontriviality in the striking

dimension 4 case. Our aim in this paper is to develop a motivic obstruction to

rationality of a very general cubic fourfold in P5, which would avoid the difficulties

above. There are two advantages of the motivic approach presented in this paper.

The first one is that there is no phantom submotives in a motive, provided it is

finite-dimensional, see Proposition 7.5 in [22]. The second advantage is that the

obstruction to rationality of a fourfold is given in terms of rational equivalence

of 0-cycles on surfaces, rather than on the fourfold itself.

To explain the idea, let X be a smooth projective connected variety of dimen-

sion n over a field, and let CHn(X × X) be the Chow group of codimension n

algebraic cycles modulo rational equivalence on X × X, with coefficients in Z.
Recall that an algebraic cycle class Ξ ∈ CHn(X × X) is said to be balanced,

if Ξ is a sum of classes represented by algebraic cycles supported on Y × X or

X ×Z, where Y and Z are closed subschemes of positive codimension in X. We

will say that Ξ is essential, if it is not torsion, not numerically trivial and not

balanced in CHn(X ×X). The motive M(X) is said to be integrally essentially

decomposable, if the diagonal class ∆ of the variety X can be presented as a

sum of two orthogonal essential idempotents in CH2(X×X). Otherwise, M(X)

is integrally essentially indecomposable. For example, the motive of a smooth

projective curve is essentially indecomposable.

If S is a smooth projective surface over a field, its Albanese kernel is con-

trolled by the transcendental motiveM2
tr(S) introduced in [21]. AlthoughM2

tr(S)

lives in the category of Chow motives with coefficients in Q, integral essen-

tial (in)decomposability of the entire motive M(S) can be viewed as integral

(in)decomposability of the transcendental motive M2
tr(S).

Clearly, if M2
tr(S) is indecomposable rationally, then it is indecomposable in-

tegrally. For example, if S is an abelian surface isogenous to the self-product of

an elliptic curve with complex multiplication over a field of characteristic 0, then

M2
tr(S) is rationally, and hence integrally indecomposable. The same is true if

S is an algebraic K3-surface over C whose motive is finite-dimensional, as the

transcendental Hodge structure is indecomposable by [38] and finite-dimensional
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motives have no phantom submotives by [22]. In particular, the transcenden-

tal motive of the resolution of the Kummer quartic, the Fermat quartic or any

quartic of Weil type in P3 is integrally indecomposable.

The following theorem gives more examples of surfaces whose transcendental

motives decompose rationally but they are indecomposable integrally.

Theorem A. Let C be a smooth projective curve over a field k of char-

acteristic 0. Assume that there is a finite group G of automorphisms of

the curve C, and nonconstant regular morphisms,

ϕi : C → E , i = 1, . . . , r ,

where E is an elliptic curve with complex multiplication over k, one for

each irreducible representation Vi of the action of G on H0(ΩC), such

that the image of the pullback homomorphism

ϕ∗
i : H

0(ΩE) → H0(ΩC)

is in Vi. Then the motive M2
tr(C × C) is integrally indecomposable, if

deg(ϕi) ≥ 4 for all i.

An explicit example of a curve satisfying the assumptions of Theorem A is the

Fermat sextic C6 in P2, see the proof of Proposition 7 in [7]. A refinement of the

technique used in the proof of Theorem A gives us the following result, which

should be compared with the main result in [2].

Theorem B. Let S6 be the Fermat sextic in P3. Then the motiveM2
tr(S6)

is integrally indecomposable.

The meaning of Theorem B is that, even if the transcendental Hodge structure

of a smooth projective surface is integrally decomposable, yet its transcenden-

tal motive can be integrally indecomposable. This suggests that the following

motivic analog of Kulikov’s Hodge-theoretic indecomposability conjecture, [24],

may be true.

Motivic indecomposability conjecture. The transcendental mo-

tive of a smooth projective surface over a field of characteristic 0 is inte-

grally indecomposable.

Now recall that the well-know conjecture due to Kimura and O’Sullivan asserts

that all Chow motives are finite-dimensional. Our third theorem is conditional.

Theorem C. If the motivic indecomposability conjecture is true, and if

the motive of any smooth projective surface is finite-dimensional, then a

very general cubic fourfold hypersurface in P5 is not rational.

It should be pointed out here that, as it was recently announced, Ayoub’s

conservativity conjecture for the de Rham, and hence Betti realization of Vo-

evodsky’s geometric motives is now proven, see [5] and [6]. If this is indeed the

case, then the motives of smooth projective surfaces are finite-dimensional, see

Corollary 2.14 in [4], and therefore the cubic fourfold non-rationality conjecture

follows solely from the motivic indecomposability conjecture above.
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The paper is organized as follows. The next Section 2 is written merely

for those readers who feel uncomfortable with Chow motives and the Chow-

Künneth decompositions. Section 3 is devoted to the notion of integral essential

(in)decomposability, and we briefly discuss the integral essential indecomposabil-

ity of the motives of products of elliptic curves with complex multiplication and

K3-surfaces. In Section 4 we prove Theorem A. In Section 5 we study in detail

the Fermat sextics and prove Theorem B. Finally, in Section 6, we state the

motivic indecomposability conjecture and prove the conditional Theorem C.

Acknowledgements. I am grateful to Alexander Kuznetsov and Mingmin

Shen for pointing out the necessity of taking into account all smooth projective

surfaces in the assumptions of Theorem B (not only surfaces in P4). Also I am

thankful to the inhabitants of Grumbinenty village in Belarus for their warm

hospitality, where the main ideas of this project were thought out in the summer

2015, and to Alexander Tikhomirov for the encouraging interest and inspiring

conversations on Skype. Finally, the author is grateful to the Center for Ge-

ometry and Physics at the Institute for Basic Science in Pohang (South Korea),

where the first version of this paper was written in December 2015.

2. Preliminaries and notation

For an algebraic scheme X over a field, let CHr(X) be the Chow group of

dimension r algebraic cycles modulo rational equivalence on X. Let also Ar(X)

be the subgroup generated by algebraically trivial cycle classes in CHr(X). If

X is equidimensional of dimension n, then we write CHn−r(X) and An−r(X) in-

stead of CHr(X) and Ar(X) respectively. One may also speak about R-modules

CHj(X)R and Aj(X)R, where R is a commutative ring of characteristic 0 and,

for an abelian group A, AR is the tensor product of A and R over Z.
Let k be a field. The category of Chow motives C(k) over k will be contravari-

ant, i.e. if X and Y are two smooth projective varieties over k, and X = ∪jXj is

the decomposition of X into connected components, then the group CHm(X,Y )

of correspondences of degree m from X to Y is the direct sum of the groups

CHnj+m(Xj × Y ), where nj is the dimension of the component Xj. For any two

correspondences α ∈ CHm(X,Y ) and β ∈ CHn(Y, Z) their composition β ◦ α
is the correspondence p13∗(p

∗
12(α) · p∗23(β)), where the central dot stays for the

intersection of cycle classes and the projections are obvious. The correspondence

β ◦ α is an element of the group CHm+n(X,Z).

The objects of C(k) may be conceived as triples (X,Σ,m), where Σ is an

idempotent1 in the algebra CH0(X,X), and m is an integer. For two motives

M = (X,Σ,m) and N = (Y,Ξ, n), the group HomC(k)(M,N) consists of all triple

compositions Ξ ◦Φ ◦Σ, where Φ ∈ CHn−m(X, Y ). The transposed graphs Γt
f of

regular morphisms f : X → Y are in CH0(Y,X) and give the standard functor

from smooth projective varieties over k to C(k). The graph of the identity map

for X is the diagonal class ∆ ∈ CH0(X,X). The motive M(X) is the triple

1throughout the paper the words “idempotent” and “projector” are synonyms
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(X,∆, 0). If Σ is an idempotent in CH0(X,X), it is convenient to write MΣ

instead of the triple (X,Σ, 0).

The category C(k) is symmetric monoidal, where the monoidal product of two

motives (X,Σ,m) and (Y,Ξ, n) is the motive (X × Y,Σ⊗ Ξ,m+ n). The triple

1 = (Spec(k),∆, 0) is the monoidal unit. The triple L = (Spec(k),∆,−1) is

called the Lefschetz motive over k. Clearly, the motive M(P1) is a direct sum of

the unit 1 and the Lefschetz motive L. We will be also using the Tate motive

T = L
−1 = (Spec(k),∆, 1), i.e. the monoidal inverse to L in C(k).

The category C(k)R with coefficients in R is obvious. Apart from the integral

category C(k), within this paper we will need the categories of Chow motives

C(k)Q and C(k)Z[1/n], where n is a positive integer and Z[1/n] is the ring obtained
by inverting the powers of the number n.

In the same vein, one can also define the groups Nr(X) of algebraic r-cycles

modulo numerical equivalence on X, and construct the category N(k) of pure

motives modulo numerical equivalence over k. The category N(k)Q is rigid tensor

and Q-linear. Moreover, it is known to be semisimple abelian by Jannsen’s result,

see [19]. If Σ is a cycle class modulo rational equivalence on a varietyX over k, we

will write Σ̄ for its class modulo numerical equivalence on X. If M = (X,Σ,m)

is a Chow motive, then M̄ = (X, Σ̄,m) is the corresponding numerical motive

over k. The functor from C(k) to N(k) sending M to M̄ is tensor, and the same

with coefficients in R. The following lemma will be systematically applied in the

context of the abelian semisimple category N(k)Q.

Lemma 1. Let A be a semisimple abelian category, let X be an object in A ,

and let

idX = a+ b

and

idX = e1 + . . .+ en

be two different decomposition of the identity automorphism of X in to two sets

of pairwise orthogonal idempotents in the associative ring End(X). Assume,

moreover, that the images of all the idempotents e1, . . . , en are simple objects in

the category A . Then the set of indices

I = {1, . . . , n}

can be represented as a disjoint union of two subsets

I = J ⊔K ,

such that

a =
∑
i∈J

ei and b =
∑
i∈K

ei .

Proof. Since

a+ b = idX = e1 + . . .+ en

and a and b are orthogonal idempotents, multiplying by a yields

a = a2 = a(a+ b) = ae1 + . . .+ aen .
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For each index i ∈ I let

X
e′i−→Mi

e′′i−→ X

be the decomposition of the idempotent ei through its image. Then

e′ie
′′
i = idMi

,

whence the morphism e′′i is a monomorphism, and the morphism e′i is an epimor-

phism in A .

Similarly, let

X
a′−→ A

a′′−→ X

and

X
b′−→ B

b′′−→ X

be the decompositions of a and, respectively, b through their images, so that

a′a′′ = idA ,

b′b′′ = idB ,

and hence a′′ and b′′ are monomorphisms and a′ and b′ are epimorphisms in A .

Then, for any index i ∈ I, whether the composition aei is 0 or not depends on

the same question for the composition a′e′′i , and similarly for compositions bei.

As the category A is abelian semisimple, the object A decomposes into simple

objects,

A = A1 ⊕ . . . As ,

and the object B decomposes into simple objects,

B = B1 ⊕ . . . Bt .

Let

a = a1 + . . .+ as and b = b1 + . . .+ bt

be the corresponding decompositions of the idempotents a and b into mutually

orthogonal idempotents, and let

A
a′j−→ Aj

a′′j−→ A

and

B
b′k−→ Bk

b′′k−→ B

be the decompositions of the idempotents through their images.

Then, for each index i ∈ I, the composition a′e′′i is 0 if and only if the com-

position a′e′′i is 0. The latter holds if and only if there exists an index j in

J = {1, . . . , s}, such that the composition a′′ja
′e′′i is 0. But as the objects Mi and

Aj are simple, the composition a′′ja
′e′′i is either 0 or an isomorphism.

Similarly, for each index i ∈ I, the composition b′e′′i is 0 if and only if the

composition b′e′′i is 0. The latter holds if and only if there exists an index k in

K = {1, . . . , t}, such that the composition b′′kb
′e′′i is 0. But as the objects Mi and

Bk are simple, the composition b′′kb
′e′′i is either 0 or an isomorphism.

Since X is the direct sum of A and B, the same object Mi cannot be inside

A and B at the same time. Therefore, for each index i ∈ I either there exists

an index j ∈ J such that a′′ja
′e′′i is an isomorphism, and then b′′kb

′e′′i is 0 for all
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k ∈ K, or there exists an index k ∈ K such that b′′kb
′e′′i is an isomorphism, and

then a′′ja
′e′′i is 0 for all j ∈ J .

This gives the obvious decomposition

I = J ⊔K

of the set I into two disjoint subsets, where

J = {i ∈ I | aei ̸= 0 but bei = 0}

and

K = {i ∈ I | bei ̸= 0 but aei = 0} .
And since

a = ae1 + . . .+ aen ,

we obtain that

a =
∑
i∈J

aei .

Similarly,

b = be1 + . . .+ ben ,

and hence

b =
∑
i∈K

bei .

Moreover, if i ∈ J then

aei = aei + 0 = aei + bei = (a+ b)ei = idXei = ei ,

and, similarly, if i ∈ K then

bei = 0 + bei = aei + bei = (a+ b)ei = idXei = ei .

Therefore,

a =
∑
i∈J

aei =
∑
i∈J

ei

and, similarly,

b =
∑
i∈K

bei =
∑
i∈K

ei .

For any prime l different from the characteristic of k, and any field extension

L/k, let Hj
ét(XL,Ql(i)) be the j-th l-adic étale cohomology group of a variety

XL over L twisted by i. If L is the algebraic closure k̄ of the ground field k, such

étale cohomology groups provide a Weil cohomology theory over k. In particular,

for any smooth projective X over k there is a cycle class homomorphism from

CHj(X) to H2j
ét (Xk̄,Ql(j)), whose kernel will be denoted by CHj(X)hom.

If L is a field extension of k and there exists an embedding σ : L ↪→ C over k,

each embedding σ̄ : L̄ ↪→ C over σ gives the pullback isomorphism between the

étale cohomology groups H2p
ét (XL̄,Ql(p)) and H2p

ét (XC,Ql(p)), commuting with

the cycle class maps. The latter group is isomorphic to the Betti cohomology

group H2p(XC,Ql) with coefficients in Ql. Therefore, homological triviality of

algebraic cycles is independent on the type of cohomology, and we may write
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H i(X) meaning either l-adic étale cohomology over k̄ or Betti cohomology groups

over L embeddable into C.
Now, for any smooth projective connected variety X of dimension n over k the

class cl(∆) in H2n(X×X) decomposes into the Künneth components cl(∆)i,n−i,

for all 0 ≤ i ≤ 2n. It is a part of the Standard Conjectures on algebraic cycles

that these classes can be lifted to mutually orthogonal idempotents πi, such that

2n∑
i=1

πi = ∆

in CHn(X ×X). In [27] Murre conjectured that, moreover, the correspondences

π0, . . . , πj−1 and π2j+1, . . . , π2n act as zero on CHj(X)Q, for any 0 ≤ j ≤ n, the

decreasing filtration

F iCHj(X)Q = ker(π2j∗) ∩ ker(π2j−1∗) ∩ . . . ∩ ker(π2j−i+1∗)

independent of the choice of π0, . . . , π2n, and

F 1CHj(X)Q = CHj(X)hom,Q

for each 0 ≤ j ≤ n.

Murre’s conjectures are equivalent to the conjectures of Beilinson and Bloch,

taken for all smooth and projective X over k, see [20]. For short, we will write

M i(X) = (X, πi, 0) ,

so that M(X) is the direct sum of the motives M i(X) for all i = 0, . . . , 2n.

If P0 is a k-rational point on X, then

π0 = [P0 ×X] ,

π2n = [X × P0]

and

M0(X) = 1 ,

M2n(X) = L
n

in C(k).
If C is a smooth projective curve, then π1 is a difference between ∆ and the

sum of π0 and π2, and we obtain the well-known decomposition

(1) M(C) = 1⊕M1(C)⊕ L

in C(k). Murre’s conjectures are true for curves. The motives 1 and L are evenly

1-dimensional, and the motive M1(C) is oddly 2g-dimensional, where g is the

genus of the curve C, see [22].

If n > 1, one can construct the Picard and its dual Albanese projector, π1
and π2n−1, which determine the Picard motive M1(X) and the Albanese motive

M2n−1(X) respectively, both with coefficients in Q, which have the expected

behaviour, see the details in [26].

Let S be a smooth projective surface having a k-rational point P0 on it. Sub-

tracting, π0, π4, the Picard and Albanese projectors π1 and π3 from the diagonal

∆S we get the middle projector π2. Respectively, we obtain the decomposition

of M(S) into the direct sum of five motives M i(S), i = 0, . . . , 4, in the category
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C(k)Q. The latter decomposition can be refined further by splitting the algebraic

part from M2(S), see [21]. Namely, let ρ be the Picard number of S and choose

ρ divisors D1, . . . , Dρ whose cohomology classes generate the second Weil coho-

mology group H2(S). Choose the Poincaré dual divisors D′
1, . . . , D

′
ρ, so that the

intersection number ⟨Di ·D′
j⟩ is the Kronecker symbol. For each index i let π2,i be

class of the product Di×D′
i. Then π2 decomposes into the algebraic idempotent

πalg
2 , i.e. the sum of projectors π2,1, . . . , π2,ρ, and the transcendental projector

πtr
2 , i.e. the difference between π2 and π2,alg. The resulting decomposition is

(2) M(S) = 1⊕M1(S)⊕ L
⊕ρ ⊕M2

tr(S)⊕M3(S)⊕ L
2

in C(k)Q. The Murre conjectures are known to be true for surfaces, except for

independence of the filtration on the choice of the projectors πi, and the latter

is true if the motive M(S) is finite-dimensional. If the surface S is regular, then

M1 =M3 = 0.

In dimension 3 some partial results are obtained too. In [27] Murre studied the

case X = S ×C, where S is a surface and C is a curve. The motive of a smooth

projective Fano threefold is finite-dimensional and the explicit Chow-Künneth

decomposition of such a motive is studied in [16].

Let now X be a smooth hypersurface in Pn+1. The dimension of Hj(X) is 0 if

if j is odd and j ̸= n, and it is 1 if j is even and j ̸= n. Let bn be the dimension

of Hn(X). Then all cohomology groups H2j(X) are algebraic, for j ̸= n. Let

Y be a general hyperplane section of X, and let γ be its class in CH1(X). For

any number j between 0 and n let γj be the j-fold self-intersection of the class

γ in CHj(X). By the Lefschetz hyperplane section theorem, the vector space

H2j(X) is generated by the cycle class γj, if 2j ̸= n. For any integer 0 ≤ i ≤ 2n

let

πi =

{
0 if i = 2j + 1, 0 ≤ j ≤ n− 1 and i ̸= n

1
deg(X)

· γn−j × γj if i = 2j, 0 ≤ j ≤ n and i ̸= n

and let

πn = ∆X −
2n∑
i=0
i̸=n

πi .

Such defined correspondences π0, . . . , π2n give the Chow-Künneth decomposition

of the diagonal for X, but it is not clear whether they fully satisfy the Murre

conjectures.

3. Essential (in)decomposability of motives

Let k be an arbitrary field. For any field extension L/k and any non-negative

integer m let

tmCHp(XL)

be the subgroup in CHp(XL) generated by the images of all pullback homomor-

phisms from CHp(XK) to CH
p(XL) induced by field embeddings K ↪→ L over

k with

tr.deg(K/k) ≤ m .
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For convenience, let also

t−1CHp(XL) = 0 .

Then we get an increasing filtration on CHp(XL), such that

tpCHp(XL) = CHp(XL)

and

tmCHp(XL) = 0

if m > p. We also have the graded components

Grmt CH
p(XL) = tmCHp(XL)/t

m−1CHp(XL)

associated to t.

The transcendental filtration t induces the filtration on the groups Ap(XL),

and we have the corresponding graded pieces. If, moreover, k is a subfield in C,
and L is a field extension of k embeddable into C over k, the filtration t induces

the filtrations on the Abel-Jacobi kernels T p(XL), as defined in [17].

The action of correspondences preserves the transcendental filtration on Chow

groups and induces the action on the corresponding graded pieces. For short, let

c0(X) = GrntCH0(Xk(X)) ,

a0(X) = GrntA0(Xk(X)) .

and

t0(X) = GrntT0(Xk(X)) ,

where n is the dimension of X and

Ti(XL) = T n−i(XL)

for any i. That is, c0(X) is the Chow group 0-cycles on the product of X

and Spec(k(X)) over Spec(k) modulo cycle classes whose transcendental level is

strictly smaller than the dimension of X, and similarly for a0(X) and t0(X).

If tn−1CHn(Xk(X)) contains a degree 1 class, the inclusion of An(Xk(X)) into

CHn(Xk(X)) induces an isomorphism between a0(X) and c0(X). Indeed, since

tn−1An(Xk(X)) = tn−1CHn(Xk(X)) ∩ An(Xk(X))

by definition, the homomorphism from a0(X) to c0(X) is injective. Let Z1 be

a degree 1 cycle whose class is in tn−1CHn(Xk(X)). Then any cycle class α in

CHn(Xk(X)) is congruent to the cycle class

α− deg(α) · [Z1]

of degree 0 modulo tn−1CHn(Xk(X)).

Let η be the generic point of X. The canonical morphism from η to X induces

the pullback homomorphism

CHn(X ×X) → CHn(Xk(X)) ,

which computes the value Φ(η) of a correspondence

Φ ∈ CHn(X ×X)
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at the generic point η. For any two cycle classes ϕ and ψ in CHn(Xk(X)), let

Φ and Ψ be their spreads as codimension n cycle classes on X ×X. Define the

product of ϕ and ψ by the formula

ϕ • ψ = (Φ ◦Ψ)(η) ,

see [21]. The value ∆(η), i.e. the generic 0-cycle on Xk(X), is the unit for this

product, which will be denoted by 1.

When tn−1CHn(Xk(X)) contains a degree 1 cycle class, one can transfer the

bullet product from c0(C) to a0(X). Namely, for any two cycle classes α and β

in a0(X), the bullet product of α and β in a0(X) is the difference between α • β
and deg(α • β) · [Z1] in c0(X), where Z1 is a degree 1 cycle. The unit 1 in a0(X)

is represented by the degree 0 zero-cycle Pη − Z1. If X(k) ̸= ∅, then Z1 can be

chosen to be a point P0 ∈ X(k). Then

1 = [Pη − P0]

in a0(X).

Let Y be another smooth projective connected variety over k. The above

homomorphism has the obvious generalization,

CHn(Y ×X) → CHn(Xk(Y )) ,

which computes the value Φ(ξ) of a correspondence Φ ∈ CHn(Y × X) an the

generic point ξ of the variety Y .

Assume that Y is of the same dimension n. A cycle class of codimension n on

Y ×X is said to be balanced from the left (right) if it can be represented by an

algebraic cycle supported on closed subschemes of type V ×X (of type X × V ),

where V is a closed subscheme of positive codimension in X. Let

BCHn(Y ×X)

be the subgroup of balanced correspondences in CHn(Y ×X), i.e. the subgroup

generated by cycles classes balanced from the left or right on Y ×X.

The notion of a balanced correspondence descends from the work of Bloch, [11],

Bloch and Srinivas, [12], and is straightforwardly connected to the notion of a

generic zero-cycle2. The homomorphism computing the values of correspondences

at the generic point induces an isomorphism

CHn(Y ×X)

BCHn(Y ×X)

∼→
CHn(Xk(Y ))

tn−1CHn(Xk(Y ))
,

which is a straightforward generalization of Lemma 4.7 in [21]. When Y = X, it

gives an isomorphism

(3)
CHn(X ×X)

BCHn(X ×X)

∼→ c0(X) ,

which allows us to identify c0(X) with the quotient of the ring of correspondences

CHn(X ×X) by the ideal of balanced classes BCHn(X ×X).

2In Appendix to Lecture 1 in [11] Spencer Bloch mentioned that “The idea that one could
deduce interesting information about the Chow group by considering the generic zero-cycle
was suggested by Colliot-Thélène. I am indebted to him for letting me steal it”.
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Warning 2. One can also introduce the balanced subgroups in An(Y ×X), and

then a temptation would be to describe a0(X) factoring balanced cycle classes in

An(X×X). This does not work as the pullback homomorphism from An(X×X)

to An(Xk(X)) is not in general surjective.

Definition 3. We will say that a correspondence Σ from Y to X is essential if it

is not torsion, not balanced and not numerically trivial on Y ×X. If the diagonal

class ∆ on X can be represented as a sum of two essential correspondences,

∆ = Λ + Ξ ,

then ∆ is integrally essentially decomposable. Otherwise, ∆ is integrally essen-

tially indecomposable. If ∆ is essentially decomposable and, moreover, Λ and

Ξ are orthogonal idempotents in CHn(X × X), then we will say that the mo-

tive M(X) is integrally essentially decomposable. Otherwise, M(X) is integrally

essentially indecomposable.

Throughout, we will use the following rule of notation: if Λ, Ξ, Σ,... are

elements in CHn(X ×X), then let λ, ξ, σ, ... are their classes modulo balanced

cycles on X × X, i.e. the classes in c0(X). In particular, 1 is the class δ of

∆ modulo balanced cycles. If ∆ is balanced, then 1 = 0 and c0(X) vanishes.

Definition 3 can be re-stated in terms of c0(X).

Definition 4. The Chow group CH0(X) is said to be integrally essentially de-

composable, if 1 is a sum of two orthogonal non-torsion idempotents in c0(X). If

no such a decomposition is possible, then CH0(X) is integrally essentially inde-

composable. In other words, CH0(X) decomposes essentially, if the ring c0(X)

is decomposable into two direct summands as a module over itself, and these

summands are non-torsion.

Warning 5. IfM(X) is integrally essentially decomposable, then so is the group

CH0(X). The converse assertion is, in general, not true, as the cycle classes in

the ideal BCHn(X×X) can be not nilpotent and hence idempotents can be not

liftable from c0(X) to CHn(X ×X).

Remark 6. Definitions 3 and 4 can be also given for Chow groups in coefficients

in Q, or in any ring R of characteristic 0. Then the following rule applies. If

M(X), as an object of C(k)Q, or CH
0(X)Q is integrally essentially decomposable,

they essentially decompose rationally. If they are essentially indecomposable

rationally, a fortiori they are essentially indecomposable integrally.

Remark 7. Definitions 3 and 4 can be certainly given for any adequate equiva-

lence relation on algebraic cycles. In particular, we have the notion of essential

(in)decomposability of the diagonal class and the motive M̄(X) modulo numer-

ical equivalence relation.

Taking into account the isomorphism (3), one can think of c0(X) as the es-

sential Chow group of 0-cycles modulo rational equivalence on X. The essen-

tial decomposability property of CH0(X), or, equivalently, the decomposability

property of c0(X), is a birational invariant of X.
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Let, for example, C1 and C2 be two smooth projective curves both having a

rational point over k, and let J1 and J2 be their Jacobians. The composition of

the obvious homomorphisms

(4)
CH1(C1 × C2)

BCH1(C1 × C2)
→ HomC(k)(M

1(C1),M
1(C2))

and

(5) HomC(k)(M
1(C1),M

1(C2)) → Hom(J1, J2) ,

is an isomorphism by Theorem 11.5.1 in [8]. It follows that both homomorphisms

are isomorphisms too.

If C1 = C2 = C, the isomorphisms (4) and (5) bring information about the

structure of the motive M(C). The classical fact is that M(C) is essentially

indecomposable. In terms of the decomposition (1), it means that the middle

motive M1(C) is integrally indecomposable, i.e. indecomposable in the category

C(k). Indeed, the Jacobian J of the curve C is a simple principally polarized

abelian variety, so that the ring End(J) has no nonzero orthogonal idempotents

whose sum would be idJ . Since End(J) is isomorphic to End(M1(C)), the latter

ring possesses the same property.

Now let us also look at the notion of integral essential (in)decomposability

in dimension 2. Let S be a smooth projective connected surface over a field

k. Recall that the motive M(S) decomposes in the standard Chow-Künneth

way, as given by the formula (2). If M(S) is essentially decomposable, the

corresponding integral decomposition of the diagonal induces the decomposition

of the transcendental projector π2
tr(S) and, accordingly, the decomposition of the

transcendental motiveM2
tr(S) into two nonzero direct summands in C(k)Q. Since

such a decomposition comes from integral projectors modulo balanced cycles,

one can say that essential decomposition of M(S) gives a hint what should be

considered as an integral decomposition of the motive M2
tr(S).

To be a bit more precise, we consider a homomorphism

CH2(S × S) → EndC(k)Q(M
2
tr(S))

sending any correspondence

Σ ∈ CH2(S × S)

to the endomorphism

Σtr = π2
tr(S) ◦ Σ ◦ π2

tr(S) .

Clearly, it factorizes through the homomorphism

(6) c0(S) → EndC(k)Q(M
2
tr(S)) ,

sending σ = [Σ] to

σtr = [Σtr] .

Localizing c0(S) with Q, the latter homomorphism becomes an isomorphism

by Theorem 4.3 in [21]. Its inverse acts as follows. Take an endomorphism Σtr

of the motive M2
tr(S) and restrict it on U × S, where U is a Zariski open subset

in S. Such restrictions are compatible, when U runs through all Zariski open
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subsets in S, which gives the cycle class Σtr(η) on Sk(S), where η is the generic

point of the surface S. In other words, the inverse isomorphism computes the

value of Σtr at the generic point η.

Definition 8. We will say that the transcendental motive M2
tr(S) decomposes

integrally, if the entire motive M(S) decomposes essentially. If at that the di-

agonal class ∆ of the surface S decomposes into a sum of two essential integral

orthogonal idempotents Λ and Ξ, we take their classes λ and ξ in c0(X), and ap-

ply the homomorphism (6) above. Then we obtain two orthogonal idempotents

λtr and ξtr splitting the transcendental motive M2
tr(S) into two nontrivial com-

ponents. Although these idempotents are born with coefficients in Q, the fact

that they come from c0(S) allows us to look at the corresponding decomposition

as an integral decomposition of M2
tr(S). If the transcendental motive M2

tr(S)

is not integrally decomposable, then we will naturally say that it is integrally

indecomposable.

Remark 9. According to Definition 8, integral (in)decomposability of the tran-

scendental motive M2
tr(S) is the same as essential (in)decomposability of the

entire motive M(S), in case when we deal with smooth projective surfaces over

the ground field. However, this extra piece of terminology can be useful in mak-

ing analogies between the conjectural integral indecomposability of the transcen-

dental motive M2
tr(S), and the integral indecomposability of the transcendental

Hodge structure of S, which is, in general, known to be false, see [2]. If M(S)

is essentially decomposable, which is equivalent to saying that M2
tr(S) decom-

poses integrally, then CH0(S) is essentially decomposable. By negating this

implication, if CH0(S) is essentially indecomposable, then M(S) is essentially

indecomposable, i.e. M2
tr(S) is integrally indecomposable.

Remark 10. Let A be an abelian group, and let α be an element in AQ. We

will say that the element α is integral if it is in the image of the canonical homo-

morphism from A to AQ. In this terminology, M2
tr(S) decomposes integrally, if

it decomposes into two nontrivial summands and the corresponding idempotents

are integral modulo balanced cycle classes in CH2(S × S)Q.

Remark 11. Definition 8 can be given with regard to any adequate equiva-

lence relation on algebraic cycles. In particular, we have the notion of integral

(in)decomposability of the motive M̄2
tr(S) in the category N(k)Q and the same

logic modulo numerical equivalence as in Remark 9.

Remark 12. If M2
tr(S) is integrally decomposable, then it decomposes ratio-

nally. By negation, if M2
tr(S) is rationally indecomposable, then it is integrally

indecomposable. We will use this observation in Propositions 14 and 15 below.

Lemma 13. Let L be a field extension over k. If M(SL) is integrally essentially

indecomposable, then M(S) is integrally essentially indecomposable. In transcen-

dental terms, if M2
tr(SL) is integrally indecomposable, then M2

tr(S) is integrally

indecomposable.

Proof. Suppose that the motive M(SL) is essentially indecomposable, but the

motive M(S) is essentially decomposable. Then M(S) splits into two nontrivial
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direct summands, say M and N , in the category C(k)Q, and the corresponding

projectors p and q are integral. Extending scalars from k to L, we obtain the

decomposition of M(SL) into the motives ML and NL by means of the integral

projectors pL and qL on the surface SL over L. Since the motive M2
tr(SL) is

integrally indecomposable, it follows that either pL or qL is zero. If, say, pL = 0,

then p must be nilpotent by the main result in [15]. Then M = 0, which is a

contradiction, as M is nontrivial.

Now we have to show that surfaces with integrally indecomposable M2
tr(S)

exist. If C is a smooth projective curve over k with C(k) ̸= ∅, then the motive

M2
tr(C × P1) is integrally indecomposable, as it trivial. The first nontrivial ex-

amples of integrally indecomposable transcendental motives are provided by the

following two propositions.

Proposition 14. Let S be an abelian surface isogenous to the self-product of an

elliptic curve with complex multiplication over k. Then M2
tr(S) is rationally and,

hence, integrally indecomposable.

Proof. The surface S is ρ-maximal by Proposition 3 in [7]. Therefore, ρ(S) = 4

and hence dim(M2
tr(S)) = 2. Suppose M2

tr(S) is integrally decomposable into

two submotives, say M and N . As the dimension of M2
tr(S) is 2, the dimension

of M and N is 1. Applying Proposition 10.3 in [22], we see that M must be

isomorphic to the Lefschetz motive L, and the same for N . It follows that the

Picard number of S is 6. This is a contradiction.

Proposition 15. Let S be an algebraic K3-surface over k, and assume that its

motive M(S) is finite-dimensional. Then M2
tr(S) is rationally and, therefore,

integrally indecomposable.

Proof. Suppose M2
tr(S) is integrally decomposable. Even more so, it is ratio-

nally decomposable. Passing to Hodge structures via Hodge realization, we see

that the rational transcendental Hodge structure of S decomposes into two non-

trivial components. Since finite-dimensional motives do not contain homolog-

ically phantom submotives by Proposition 7.5 in [22], the components in the

rational transcendental Hodge structure of S are nontrivial. This contradicts to

the main result in [38].

Example 16. Let (x : y : z : t) be homogeneous coordinates in P3. A hyper-

surface S of degree d in P3 is said to be of Weil type, if S can be given by the

equation

f(x, y) + g(z, t) = 0 ,

where f and g are two forms of the degree d over the ground field. For example,

the Fermat hypersurface of degree d in P3 is of Weil type. We will also say that

S is of Shioda type, if it is given by the equation

xyd−1 + yzd−1 + zxd−1 + td = 0

whose coefficients lie inQ. The motives of Weil hypersurfaces are finite-dimensional.

That can be deduced from the results in [30]. It is also easy to construct a
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dominant rational map from the degree d Fermat hypersurface onto the Shioda

hypersurface of the same degree, see [31]. Therefore, the motive of the Shioda

hypersurface in P3 is finite-dimensional too. Therefore, M2
tr(S) is integrally in-

decomposable, if S is a K3 hypersurface of Weil or Shioda type. Certainly, if S

is the resolution of double points on the Kummer quartic in P3, then the motive

M2
tr(S) is finite-dimensional and hence integrally indecomposable.

4. The self-product of a curve mapped onto a CM elliptic curve

In all the examples considered above, the integral indecoposability of the tran-

scendental motive M2
tr(S) is a consequence of its rational indecoposability. The

aim of this section is to show an example of a surface, whose transcendental

motive decomposes rationally, but it is integrally indecomposable.

Let C be a smooth projective curve over a field k, and assume that C(k) ̸= ∅.
The purpose of this section is to show that the motive M2(C ×C) is essentially

indecomposable, provided C has enough morphisms onto an elliptic curve with

complex multiplication.

Let

p1256 : C × C × C × C × C × C → C × C × C × C

be the projection onto the product of the first, second, fifth and sixth factors,

and let

id×∆×∆× id : C × C × C × C → C × C × C × C × C × C ,

be the closed imbedding induced by the diagonal embedding of the second factor

into the product of the second and third factors, and the diagonal embedding

of the third factor into the product of the fourth and fifth factors. These two

morphisms induce two pullback homomorphisms

p∗1256 : CH
2(C × C × C × C) → CH2(C × C × C × C × C × C)

and

(id×∆×∆× id)∗ : CH3(C × C × C × C × C × C) → CH3(C × C × C × C)

respectively. Let Σ be a codimension 1 cycle class on C × C, and let

iΣ : CH2(C × C × C × C × C × C) → CH3(C × C × C × C × C × C)

be the homomorphism of intersection with the cycle class

[C × C]× Σ× [C × C]

on the 6-fold product of the curve C. Let also

p14 : C × C × C × C → C × C

be the projection onto the product of the first and fourth factors, and let

p14∗ : CH
3(C × C × C × C) → CH1(C × C)

be the induced pushforward homomorphism on Chow groups. Define the convo-

lution by Σ homomorphism

cv 0
Σ : CH2(C × C × C × C) → CH1(C × C)
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to be the composition

p14∗ ◦ (id×∆×∆× id)∗ ◦ iΣ ◦ p∗1256 .

For example, if A and B are two cycle classes in CH1(C × C), then

cv 0
Σ(A× B) = B ◦ Σ ◦ A

and

(7) cv 0
Σ(A⊗ B) = B ◦ Σt ◦ A .

Let J be the Jacobian of the curve C. A convolution by Σ augmented by J is

the composition

cvΣ : CH2(C × C × C × C) → End(J) ,

of the convolution cv 0
Σ, the factorization of CH1(C×C) modulo balanced cycles,

and the homomorphisms (4) and (5).

Similarly, one can construct the convolutions with coefficients in Q.

Let E be an elliptic curve over k and let

f : C → E

be a nonconstant regular morphism of degree

n = deg(f)

from C onto E over k. Then we have the correspondences

Γt
fΓf ∈ CH1(C × C)

and

(Γt
f ◦ Γf )⊗ (Γt

f ◦ Γf ) = (Γt
f ⊗ Γt

f ) ◦ (Γf ⊗ Γf ) ∈ CH2((C × C)× (C × C)) .

Respectively, we also have the idempotent

1

n
· Γt

fΓf ,

splitting M(E) from M(C), and the idempotent

1

n
· Γt

fΓf ⊗ Γt
fΓf ,

splitting M(E × E) from M(C × C) in C(k)Q.

Identify the Jacobian of E with E via the neutral element O in a chosen group

law on E. The morphism f induces the morphisms

f ∗ : E → J and f∗ : J → E ,

such that f∗f
∗ = n. Let

e0f = f ∗f∗ ,

and let

ef =
1

n
· e0f

be the idempotent which induces the splitting of E from J in the category of

abelian varieties up to isogeny, see Section 5.3 in [8].
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It is not hard to see that

cv∆

(
1

n2
· Γt

fΓf ⊗ Γt
fΓf

)
= ef

in EndQ(J).

Let g be the genus of C, let G be a finite group of automorphisms of the curve

C, and let

V1, . . . , Vr

be the irreducible representations of the G-module

H0(ΩC) ,

where ΩC is the sheaf of regular 1-forms on the curve C. Assume there exists

an elliptic curve E with complex multiplication over k, and non-constant regular

morphisms

ϕi : C → E ,

for each index i, such that the image of the pullback homomorphism

ϕ∗
i : H

0(ΩE) → H0(ΩC) ,

is a subgroup in Vi. In such a situation, the Jacobian J of the curve C is

isogenous to the self-product Eg of g copies of the curve E, and the surface

C × C is ρ-maximal, see Lemma 2 and Proposition 5 in [7]. Therefore, if C

enjoys the assumption above, we will say that C is a curve with elliptically split

Jacobian. If, moreover, g > 1, the degree of each morphism ϕi is greater than 1,

and, therefore, J is isogenous but not regularly isomorphic to Eg.

So, since now, we will assume that C is a curve with elliptically split Jacobian.

In such a case the Neron-Severi group NS(C × C) can be computed by the

formula

NS(C × C) = Z⊕ Z⊕ Hom(J, J) ,

and since E is an elliptic curve with complex multiplication over k and J is

isogenous to Eg, the rank of the abelian group Hom(J, J) is equal to 2g2, see

page 104 in loc.cit. The second Betti number for the surface E×C is 4g+2 and

the Picard number is 2g + 2 by Lemma 1 in [7]. Hence,

dim(M2
tr(E × C)) = 2g ,

and, similarly,

dim(M2
tr(C × C)) = 2g2 .

Let

τ ∈ H0(ΩE)

be a generator in the one-dimensional space of global sections of the sheaf of

regular 1-forms on E. For each index i choose a subset Gi in G, such that

ζ∗ϕ∗
i (τ) , ζ ∈ Gi ,

form a basis in Vi. Let

f : C → Eg
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be a regular morphism constructed by the morphisms ϕiζ, where i ∈ {1, . . . , r}
and ζ ∈ Gi, as in the proof of Lemma 2 in [7], and let

fi : C → E

be the composition of f with the i-th projection from Eg onto the i-th factor E.

Let also

ni = deg(fi) .

Now we have exactly g regular morphisms

f1, . . . , fg

from C onto E, each of which is a composition of ϕi and ζ ∈ Gi.

Let

I = {1, . . . , g} .
For each index i ∈ I we now have the idempotent

ei =
1

ni

· e0i ,

where

e0i = f ∗
i fi∗ ,

see Section 5.3 in [8]. If

Ei = im(fi)

is the image of fi inside the Jacobian J , then ei is the uniquely defined symmetric

idempotent in EndQ(J) corresponding to the elliptic curve Ei inside J , see The-

orem 5.3.2 in [8], and the integral endomorphism e0i is the norm-endomorphism

of the curve Ei in J .

For short, let

Θ = π2
tr(E × E)

be the transcendental projector on the product elliptic surface E × E. Since

π2(E × E) = π2(E)⊗ π0(E) + π1(E)⊗ π1(E) + π0(E)⊗ π2(E)

and

dim(M2
alg(E × E)) = 4 ,

one can choose two divisors D1 and D2, and their Poincaré dual divisors D′
1 and

D′
2 on E × E, such that, if

A1 = D1 ×D′
1 , A2 = D2 ×D′

2

and

A = A1 +A2 ,

then

π1(E)⊗ π1(E) = A + Θ .

Let also

Γi = Γfi ,

Γij = Γi ⊗ Γj .

Θij =
1

ninj

· Γt
ij ◦Θ ◦ Γij ,
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A1
ij =

1

ninj

· Γt
ij ◦ A1 ◦ Γij ,

A2
ij =

1

ninj

· Γt
ij ◦ A2 ◦ Γij

and

Aij =
1

ninj

· Γt
ij ◦ A ◦ Γij ,

so that

Aij = A1
ij +A2

ij

for each two indices i and j between 1 and g.

In terms of motives, let

T =M2
tr(E × E) = (E × E,Θ, 0) ,

where

dim(T ) = 2 ,

and let

A = (E × E,A, 0) = L⊕ L ,

so that

M1(E)⊗M1(E) = A⊕ T = L⊕ L⊕ T ,

and hence

M2(E × E) = (M2(E)⊗M0(E))⊕ (M1(E)⊗M1(E))⊕ (M0(E)⊗M2(E))
= L⊕ A⊕ T ⊕ L

= L⊕ L⊕ L⊕ T ⊕ L .

Let also

A1
ij = (C × C,A1

ij, 0) = L , A2
ij = (C × C,A2

ij, 0) = L ,

Aij = (C × C,Aij, 0) = A1
ij ⊕ A1

ij and Tij = (C × C,Θij, 0)

be the 2-dimensional images of the motives A and T respectively inside the

middle motive M2(C × C) under the embeddings

Γt
ij :M(E × E) →M(C × C) .

The motives Tij can be viewed as indecomposable “motivic atoms” inside the

transcendental motiveM2
tr(C×C). Since the motiveM(S) is finite-dimensional,

there are no homologically phantom submotives in M(S) by Proposition 7.5 in

[22]. It follows that

M2
tr(C × C) = ⊕g

i,j=1Tij ,

i.e. the transcendental motiveM2
tr(C×C) consists of exactly g2 motives Tij each

of which is isomorphic to the indecomposable motive T .

The following exercises give some practicing in how the motives Tij are placed

inside M2
tr(C × C). First of all,

M1(Eg) =M1(E)⊕g ,

whence

M2(E × Eg) = L⊕ (M1(E)⊗M1(E))⊕g ⊕M2(Eg) .
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Since

M1(E)⊗M1(E) = L
⊕2 ⊕M2

tr(E × E) ,

we obtain that

M2(E × Eg) = L⊕ (L⊕2 ⊕M2
tr(E × E))⊕g ⊕M2(Eg) ,

i.e. there are g copies of the indecomposable 2-dimensional motive M2
tr(E × E)

as direct summands inside the motive M2(E × Eg). Composing the embedding

of M2
tr(E × E)⊕g into M(E × Eg) with the morphism

∆× Γt
f :M(E × Eg) →M(E × C) ,

we obtain a morphism

M2
tr(E × E)⊕g →M(E × C) .

Precomposing the latter with the j-th canonical inclusion of M2
tr(E × E) into

M2
tr(E × E)⊕g, we obtain the morphism from M2

tr(E × E) to M(E × C) which

factorizes through the transcendental motiveM2
tr(E×C). This gives g transcen-

dental 2-dimensional motives

T̃ij , j = 1, . . . , g ,

inside M2
tr(E × C), for each fixed i.

Further we compute

M2(Eg × C) =M2(Eg)⊕ (M1(E)⊗M1(C))⊕g ⊕ L ,

and since

M1(E)⊗M1(C) = L
⊕2g ⊕M2

tr(E × C) ,

one has g independent copies of the motive M2
tr(E × C) inside M2(Eg × C).

Composing the embedding of M2
tr(E × C) into M2(Eg × C) with the morphism

Γt
f ×∆ :M(Eg × C) →M(C × C)

we obtain the embedding

M2
tr(E × C)⊕g →M(C × C) .

Precomposing the latter with the i-th canonical embedding of M2
tr(E × C) into

M2
tr(E × C)⊕g we obtain the morphism from M2

tr(E × C) to M(C × C) which

factorizes through the transcendental motive M2
tr(C × C) and, thus, gives g

isomorphic copies of the motive M2
tr(E × C) inside M2

tr(C × C).

Since each M2
tr(E × C) consists of g transcendental 2-dimensional motives

T̃i1, . . . , T̃ig, we obtain that all together there are g2 images Tij of the indecom-

posable transcendental motive T inside M2
tr(C × C) under the morphisms Γt

ij,

i.e.

(8) M2
tr(C × C) =

g∑
i,j=1

Tij ,

and, in terms of projectors,

(9) π2
tr(C × C) =

g∑
i,j=1

Θij .
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In the same manner,

(10) M2
alg(C × C) = L⊕

g∑
i,j=1

Aij ⊕ L ,

so that

dim(M2
alg(C × C)) = 2g2 + 2 ,

and, in terms of projectors,

π2
alg(C × C) = π2(C)⊗ π0(C) +

g∑
i,j=1

Aij + π0(C)⊗ π2(C) .

Now a complete accounting of M(C × C) is this:

M(C × C) = ⊕4
i=0M

i(C × C) ,

where

M0(C × C) =M0(C)⊗M0(C) = 1 ,

M1(C × C) = (M1(C)⊗M0(C))⊕ (M1(C)⊗M0(C))
= M1(C)⊕M1(C) ,

M2(C × C) = (M2(C)⊗M0(C))⊕ (M1(C)⊗M1(C))⊕ (M0(C)⊗M2(C))
= L⊕ (M1(C)⊗M1(C))⊕ L

= M2
alg(C × C)⊕M2

tr(C × C) ,

where M2
tr(C × C) and M2

alg(C × C) are described by (8) and (10),

M3(C × C) = (M2(C)⊗M1(C))⊕ (M1(C)⊗M2(C))
= (L⊗M1(C))⊕ (M1(C)⊗ L) ,

and

M4(C × C) =M2(C)⊗M2(C) = L
4 .

The motives L⊗M1(C) and M1(C)⊗L are integrally indecomposable, because

the Tate motive T is monoidally inverse to the Lefschetz motive L.

We will also need the following notation, with regard to the structure of the

motive M(C × C). Let

I2 = I × I

be the Cartesian square of the set I. For any subset

U ⊂ I2

let

A1
U =

∑
(i,j)∈U

A1
ij ,

A2
U =

∑
(i,j)∈U

A2
ij ,

AU =
∑

(i,j)∈U

Aij ,

ΘU =
∑

(i,j)∈U

Θij ,
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be the projectors, and let

A1
U =

⊕
(i,j)∈U

A1
ij

A2
U =

⊕
(i,j)∈U

A2
ij

AU =
⊕

(i,j)∈U

Aij

and

TU =
⊕

(i,j)∈U

Tij

be the corresponding algebraic and transcendental submotives in M(C × C). If

W = I2 r U ,

then, of course,

M2
alg(C × C) = L⊕ AU ⊕ AW ⊕ L .

and

M2
tr(C × C) = TU ⊕ TW .

Next, let γi be the class of Γi modulo balanced cycles in CH1(C × C)Q. Let

also γij, αij and θij be the classes of, respectively, the correspondences Γij, Aij

and Θij modulo balanced cycles in CH2((C×C)×(C×C))Q. The transcendental
projector π2

tr(E×E) is congruent to ∆ modulo balanced cycles on the self-product

of the surface E × E. Therefore,

θij =
1

ninj

· γtijγij ,

for each indices i and j. Since

γij = γi ⊗ γj ,

it follows that

θij =
1

ni

· γtiγi ⊗
1

nj

· γtjγj .

The norm-endomorphism e0i of the elliptic curve Ei in J can be expressed as

e0i = γtiγi ,

and, as we have seen above, the idempotent

ei =
1

ni

· e0i ,

symmetric under the Rosatti involution, determines the i-th factor in Eg under

the isogeny between J and Eg. The degree ni is the exponent of the elliptic curve

Ei in J . Then

θij = ei ⊗ ej

in the group
CH2(S × S)Q
BCH2(S × S)Q

.
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Due to (9),

1 =

g∑
i,j=1

θij

in c0(S)Q.

Lemma 17. Let a and b be two arbitrary indices in I. In terms above,

cvΓt
aΓb

(Al
ij) =

{
−1

2
· γtbγa , if i = a and j = b

0 otherwise

and

cvΓt
aΓb

(Θij) =

{
2γtbγa , if i = a and j = b
0 otherwise

for any l = 1, 2 and all i and j between 1 and g.

Proof. For any two divisors D and D′ on E × E,

Γt
ij ◦ (D ×D′) ◦ Γij = (Γt

j ◦D ◦ Γi)× (Γt
j ◦D′ ◦ Γi) ,

whence

(11) cv 0
Γt
aΓb

(Γt
ij ◦ (D ×D′) ◦ Γij) = Γt

j ◦D′ ◦ Γi ◦ Γt
a ◦ Γb ◦ Γt

j ◦D ◦ Γi .

If i ̸= a, then Γi ◦ Γt
a is a balanced class in the group CH1(E ×E)Q. If j ̸= b,

then Γb ◦ Γt
j is a balanced class in CH1(E × E)Q. In particular,

(12) cvΓt
aΓb

(Al
ij) = 0

for l = 1, 2, if either i ̸= a or j ̸= b.

For the same reason,

(13) cvΓt
aΓb

(Γt
ij ◦ Γij) = cvΓt

aΓb
(Γt

iΓi ⊗ Γt
jΓj) = γtjγjγ

t
bγaγ

t
iγi = 0 ,

if either i ̸= a or j ̸= b.

Moreover, if t is different from s, then one of the two projectors πs(E) or πt(E)

is a balanced cycle class on C × C, whence

cvΣ(Γ
t
ij ◦ (πs(E)⊗ πt(E)) ◦ Γij) = 0

for any cycle class Σ in CH1(C × C).

The equalities (11), (12) and (13) then give

cvΓt
aΓb

(Θij) = 0 ,

if either i ̸= a or j ̸= b.

Now assume that i = a and j = b. In such a case,

(14) cv 0
Γt
aΓb

(Γt
ab ◦ (D ×D′) ◦ Γab) = na · nb · Γt

b ◦D′ ◦D ◦ Γa ,

for any two divisors D and D′ on E × E.

Since E is an elliptic curve with complex multiplication, there is a positive

integer d, not a square in Z, such that EndQ(E) is isomorphic to the imaginary

quadratic field Q(
√
−d). Let Σ be the graph of the endomorphism

√
−d : E → E ,



MOTIVIC OBSTRUCTION TO RATIONALITY 25

and consider the divisors

D1 = ∆− [O × E]− [E ×O] and D2 = Σ− d · [O × E]− [E ×O]

on E × E. Since −1
2
·D1 is Poincaré dual to D1 and − 1

2d
·D2 is Poincaré dual

to D2, we have that

A1 = −1

2
·D1 ×D1 and A2 = − 1

2d
·D2 ×D2 .

Then (14) gives

cvΓt
aΓb

(Al
ab) = −1

2
· γtbγa ,

for l = 1, 2.

And since

cv 0
Γt
aΓb

(
1

nanb

· Γt
ab ◦ Γab

)
= Γt

b ◦ Γa ,

it follows that

cvΓt
aΓb

(Θab) = 2 · γtbγa ,

For any permutation σ if the numbers {1, . . . , g} let

σEg : Eg → Eg

be the regular morphism permuting the factors in Eg according to the permu-

tation σ. The morphisms fi∗ : J → E and f ∗
i : E → J induce the inverse

isogenies

f∗ : J → Eg and f ∗ : Eg → J .

Let

σJ : J → J

be the composition f ∗ ◦ σEg ◦ f∗. Then σJ is an element in End(J), which

decomposes as

σJ =
1

n1

· γt1γσ(1) + . . .+
1

ng

· γtgγσ(g)

in EndQ(J). Therefore, if

ΣJ =
1

n1

· Γt
1Γσ(1) + . . .+

1

ng

· Γt
gΓσ(g) ,

then ΣJ is integral modulo balanced cycles on C × C.

Certainly, σJ is an automorphism, (σ−1)J is the same as (σJ)
−1, and we may

simply write σ−1
J . If σ is the identity permutation, then ΣJ is congruent to the

diagonal ∆ modulo balanced cycles. Formula (7) gives that

cvΣJ
(∆⊗∆) = σt

J .
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Corollary 18. For any permutation σ,

cvΣJ
(Al

ij) =

{
− 1

2ni
· γtσ(i)γi , if j = σ(i)

0 otherwise

and

cvΣJ
(Θij) =

{
2
ni

· γtσ(i)γi , if j = σ(i)

0 otherwise

for any l = 1, 2 and all i and j between 1 and g.

Proof. This is a straightforward consequence of Lemma 17.

For any subset K in I, let

eK =
∑
i∈K

ei ,

and write eK = 0 if K is empty. In particular,

eI = idJ

is the identity automorphism of the Jacobian J . Let also nK be the exponent of

an abelian subvariety EK in J associated to the idempotent eK , i.e. the minimal

positive integer nK , such that nKeK is integral. Then we write

eK =
1

nK

· e0K ,

where e0K is the norm-endomorphism of EK , in terms of [8]. We will need the

following easy lemma.

Lemma 19. Let A and B be two subsets in I, and assume that

nK ≥ 4

for any subset K in I, such that

∅ ̸= K ̸= I .

If

2eA + eB ∈ End(J) ,

then

A,B ∈ {∅, I} .

Proof. Let

S = A ∩B , T = ArB , R = B r A .

Then S, T and R are three subsets in I,

S ∩ T = S ∩R = T ∩R = ∅ ,
and

g = 2eA + eB = 3eS + 2eT + eR

is integral by assumption. As

2eT + 2eR = 3g − g2 .

is integral too, and since T ∩R = ∅, the endomorphism

2 · eT∪R
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is integral.

Now, if ∅ ̸= T ∪ R ̸= I, Proposition 12.1.1 in [8] gives nT∪R = 2, which

contradicts to the assumption of the lemma.

If T ∪R = I, then I = A ∪B and A ∩B = ∅. In such a case,

g = 2eA + eB = 2eA + eIrA = eA + id ,

whence eA is integral. Therefore, either A = ∅ and then B = I, or A = I and

then B = ∅.
If T ∪R = ∅, then A = B, and hence 3eA is integral. If ∅ ̸= A ̸= I, Proposition

12.1.1 in [8] gives nA = 3, which contradicts to the assumption of the lemma.

Therefore, either A = I or ∅.

For any subset U in I2 let

IU,σ = {i ∈ I | (i, σ(i)) ∈ U} ,

and let

σU =
∑
i∈IU,σ

1

ni

· γtiγσ(i) .

If σ = 1g is the identity permutation, then, for short of notation, we will write

IU = IU,1g

and

eU = eIU .

Then, of course,

(1g)U = eU .

The endomorphisms σU have many nice properties. For example, one has

Corollary 20. For any U ⊂ I2,

cvΣJ
(Al

U) = −1

2
· σt

U

for l = 1, 2, and

cvΣJ
(ΘU) = 2 · σt

U

Proof. Straightforward from Corollary 18.

It is also easy to see that

(σU)
m = (σm)U ,

for any natural number m, so that we will simply write σm
J for both. If m is the

order of the permutation σ, then

σm
U = eU .

Another useful property of the endomorphisms σU is this. Let

Iσ,U = {i ∈ I | (σ(i), i) ∈ U} ,

and let

eσ,U =
∑
i∈Iσ,U

1

ni

· γtiγi .
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In particular,

eid,U = eU .

If m is the order of σ, it is easy to see that

σJ ◦ σm−1
U = eσm−1,U ,

or, equivalently,

σJ ◦ (σ−1)U = eσ−1,U .

Swapping σ and σ−1 yeilds

σ−1
J ◦ σU = eσ,U ,

and, transposing, we obtain

(15) σt
U ◦ (σ−1

J )t = eσ,U

for any subset U in I2.

The following result is Theorem A in Introduction.

Theorem 21. Let k be a field of characteristic 0, and let C be a smooth projective

curve over k. Assume that the Jacobian of C splits by an elliptic curve with

complex multiplication E, i.e. there is a finite group G of automorphisms of C

and non-constant regular morphisms,

ϕi : C → E , i = 1, . . . , r ,

one for each irreducible representation Vi of the action of G on H0(ΩC), such

that the image of the pullback homomorphism

ϕ∗
i : H

0(ΩE) → H0(ΩC)

is in Vi. Assume, furthermore, that

deg(ϕi) ≥ 4

for all i. Then the motive M(C × C) is essentially indecomposable, i.e. the

transcendental motive M2
tr(C × C) is indecomposable integrally.

Proof. By Lemma 13, the ground field k can be algebraically closed. Assume the

motiveM2
tr(C

2) decomposes integrally. According to Definition 8 and Remark 9,

it means that the diagonal class of the surface C2 decomposes into two mutually

orthogonal idempotents,

∆ = Λ + Ξ ,

in the Chow group

CH2(C × C × C × C) ,

such that their classes λ and, respectively, ξ modulo balanced cycles are nontrivial

and non-torsion. Then, of course, we have the corresponding splitting

M(C × C) =MΛ ⊕MΞ

into two non-torsion motives in C(k).
Let g be the genus of the curve C, and let

I = {1, . . . , g} .
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Construct the morphisms fi as above, and set

ni = deg(fi) ,

for each index i in I. Then we have the systems projectors A1
ij, A

2
ij and Θij on

the surface C × C.

For short, let

K = {0, 1, 2} , K2 = K ×K ,

and for each ordered pair of indices

(s, t) ∈ K2 r {1, 1}

let

Bs,t =M s(C)⊗M t(C) ,

and for any subset

L ⊂ K2 r {1, 1}
let

BL = ⊕(s,t)∈LB
s,t

be the motive given by the projector

BL =
∑

(s,t)∈L

πs(C)⊗ πt(C) .

Then

M(C × C) = ⊕(i,j)∈I2(A
1
ij ⊕ A2

ij ⊕ Tij)⊕ (⊕(s,t)∈K2r{1,1}B
s,t)

is the refined Chow-Künneth decomposition of M(C ×C), and each direct sum-

mand in this decomposition is an indecomposable motive in C(k)Q. Using the

semisimplicity of the numerical category N(k)Q and Lemma 1, we obtain that

there exist subsets

UΛ , UΞ , VΛ , VΞ , WΛ , WΞ ⊂ I2 ,

LΛ , LΞ ⊂ K2 r {1, 1} ,
such that

I2 = UΛ ∪ UΞ = VΛ ∪ VΞ =WΛ ∪WΞ ,

K2 r {1, 1} = LΛ ∪ LΞ ,

all four unions are disjoint,

M̄Λ = Ā1
UΛ

⊕ Ā2
VΛ

⊕ T̄WΛ
⊕ B̄LΛ

and

M̄Ξ = Ā1
UΞ

⊕ Ā2
VΞ

⊕ T̄WΞ
⊕ B̄LΞ

in N(k)Q. It follows that

(16) Λ = A1
UΛ

+A2
VΛ

+ΘWΛ
+ BLΛ

+ΥΛ

and

(17) Ξ = A1
UΞ

+A2
VΞ

+ΘWΞ
+ BLΞ

+ΥΞ

for some numerically trivial correspondences ΥΛ and ΥΞ in CH2(C×C×C×C)Q.
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Since the motiveM(C) is finite-dimensional, any numerically trivial cycle class

in CH1(C × C) is nilpotent by Proposition 7.5 in [22]. On the other hand, the

algebra EndQ(J), being a product of fields, has no nilpotent elements in it. It

follows that, for any Σ ∈ CH1(C × C) the convolution cvΣ takes numerically

trivial correspondences in CH2(C × C × C × C) to 0. In particular,

cvΣ(ΥΛ) = 0 and cvΣ(ΥΞ) = 0

in EndQ(J).

Moreover, if (s, t) ∈ K2 r {1, 1}, then at least one of the projectors, πs(C) or

πt(C), is balanced on C × C, so that

cvΣ(π
s(C)⊗ πt(C)) = πt(C) ◦ Σt ◦ πs(C) = 0 ,

whenever s is different from t. It follows that

cvΣ(BLΛ
) = 0 , cvΣ(BLΞ

) = 0

in EndQ(J).

Therefore, the equalities (16) and (17) yield

cvΣ(Λ) = cvΣ(A
1
UΛ
) + cvΣ(A

2
VΛ
) + cvΣ(ΘWΛ

)

and

cvΣ(Ξ) = cvΣ(A
1
UΞ
) + cvΣ(A

2
VΞ
) + cvΣ(ΘWΞ

)

for any Σ in CH1(C × C).

Case 1: when both sets IWΛ
and IWΞ

are nonempty

By Corollary 18,

(18) cv∆(Λ) = −1

2
· eUΛ

− 1

2
· eVΛ

+ 2 · eWΛ
,

and

(19) cv∆(Ξ) = −1

2
· eUΞ

− 1

2
· eVΞ

+ 2 · eWΞ
,

in EndQ(J), and, since the sets IWΛ
and IWΞ

are both nonempty, eWΛ
̸= 0 and

eWΞ
̸= 0.

Suppose there exists i ∈ IUΛ
r (IWΛ

∪ IVΛ
). Multiplying (18) by ei, we obtain

ei · cv∆(Λ) = −1

2
· ei .

Multiplying both sides by −2ni, we get

−2 · e0i · cv∆(Λ) = e0i .

Since cv∆(Λ) is integral and e0i is the norm-endomorphism of the i-th elliptic

curve inside J , the latter equality contradicts the Norm-endomorphism Criterion

5.3.4 on page 124 in [8]. Therefore, IUΛ
is a subset of IWΛ

∪IVΛ
. By symmetry, IVΛ
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is a subset of IWΛ
∪ IUΛ

. Moreover, if we suppose that there exists i ∈ IUΛ
r IVΛ

,

such i must be in IWΛ
, and the multiplication of (18) by ei gives

ei · cv∆(Λ) = −1

2
· ei + 2ei .

Multiplying by 2ni yields

2e0i · cv∆(Λ) = 3e0i ,

whence

2 · (2e0i · cv∆(Λ)− e0i ) = e0i ,

and we again in contradiction with the Criterion 5.3.4 in loc.cit. Therefore,

IUΛ
⊂ IVΛ

. By symmetry, IVΛ
⊂ IUΛ

. Thus, IUΛ
= IVΛ

, and, similarly, IUΞ
= IVΞ

.

Therefore, (18) and (19) turn into the equalities

(20) cv∆(Λ) = 2 · eWΛ
− eUΛ

and

(21) cv∆(Ξ) = 2 · eWΞ
− eUΞ

,

respectively.

Since

cv∆(∆) = id

and hence

id = cv∆(Λ) + cv∆(Ξ) ,

and also taking into account (20), (21), we obtain

id = (2eWΛ
− eUΛ

) + (2eWΞ
− eUΞ

) ,

where the endomorphisms in the brackets are integral. Re-arranging,

3 · id = (2eWΛ
+ eUΞ

) + (2eWΞ
+ eUΛ

) ,

and the endomorphisms in the brackets are still integral. Applying Lemma 19

IWΛ
, IWΞ

∈ {∅, I} ,

which contradicts to the assumption of Case 1.

Case 2: when one of the two sets IWΛ
and IWΞ

is empty

If, say, IWΞ
is empty, then IWΛ

must be the whole diagonal in I2. Since the

decomposition

∆ = Λ + Ξ

induces a splitting of M2
tr(C ×C) into two nontrivial components, the set WΞ is

nonempty, however. Choose and fix an arbitrary pair

(i0, j0) ∈ WΞ ,

and let σ be a transposition of the elements i0 and j0 in {1, . . . , g}. The permu-

tation σ induces the automorphism

σJ : J → J ,
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and the cycle class

ΣJ =

g∑
i=1
i̸=i0
i̸=j0

1

ni

Γt
iΓi +

1

ni0

Γt
i0
Γj0 +

1

nj0

Γt
j0
Γi0 .

By Corollary 20,

cvΣJ
(Λ) = −1

2
· σt

UΛ
− 1

2
· σt

VΛ
+ 2 · σt

WΛ
,

and

cvΣJ
(Ξ) = −1

2
· σt

UΞ
− 1

2
· σt

VΞ
+ 2 · σt

WΞ
.

Since Λ and Ξ are integral cycle classes, and ΣJ is integral modulo balanced

cycles, it follows that cvΣJ
(Λ) and cvΣJ

(Ξ) are integral cycle classes. Since,

moreover, cvΣJ
(∆) is σt

J , we see that

σt
J =

(
2σt

WΛ
− 1

2
· σt

UΛ
− 1

2
· σt

VΛ

)
+

(
2σt

WΞ
− 1

2
· σt

UΞ
− 1

2
· σt

VΞ

)
,

where the cycles in the brackets are integral.

Multiplying the latter equality by the integral cycle class σt
J from the right,

and using (15), we obtain

id =

(
2eσ,WΛ

− 1

2
· eσ,UΛ

− 1

2
· eσ,VΛ

)
+

(
2eσ,WΞ

− 1

2
· eσ,UΞ

− 1

2
· eσ,VΞ

)
.

Since σt
J is integral, the sums in the brackets remain to be integral.

Arguing similarly as in Case 1, we see that UΛ = VΛ and UΞ = VΞ, and we get

the equality

id = (2eσ,WΛ
− eσ,UΛ

) + (2eσ,WΞ
− eσ,UΞ

) .

Re-arranging, we obtain

3 · idJ = (2eσ,WΛ
+ eσ,UΞ

) + (2eσ,WΞ
+ eσ,UΛ

) .

Now, since IWΛ
is the whole diagonal in I2, the endomorphism eσ,WΛ

is nonzero.

As (i0, j0) is a pair in WΞ, and i0 is σ(j0), we also obtain that eσ,WΞ
is nonzero.

Then, just as in Case 1, applying Lemma 19 we see that the latter equality, in

which the sums in each bracket from the right hand side is integral, leads to a

contradiction.

This finishes the proof of the theorem.

5. The transcendental motive of the Fermat sextic in P3

To give an explicit example, we use the Fermat sextic in P2 and the arguments

borrowed from the proof of Proposition 7 in [7]. Let x, y, z be the homogeneous

coordinates in P2, and consider the Fermat sextic curve

C6 ⊂ P2 ,

given by the equation

x6 + y6 + z6 = 0 .
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Let µ6 be the group of all 6-th roots of unit in C, and let

µ2
6 = µ6 × µ6

be the two-fold product of µ6. Then µ
2
6 acts on C6 by the rule

(ϵi, ϵj)(a : b : c) = (ϵia : ϵjb : c) ,

where ϵ is a primitive 6-th root of 1 in C, i.e.

µ6 = ⟨ϵ⟩ .

Since the equation of C6 is symmetric in all three coordinates, the symmetric

group Σ3 of permutations of three elements acts on C6 by permuting the co-

ordinates on C6. Then both groups µ2
6 and Σ3 are subgroups in Aut(C6) and,

moreover,

Aut(C6) = µ2
6 o Σ3 ,

i.e. the group of all regular automorphisms of the curve C6 is the semidirect

product of these two subgroups µ2
6 and Σ3, see the main theorem in [33].

As suggested on page 108 in [7], we look at the global section

ω =
xdy − ydx

z5
=
ydz − zdy

x5
=
zdx− xdz

y5

of the sheaf

ΩC6(−3) .

The three irreducible representations

of Σ3 and the standard method of constructing irreducible representations of the

semidirect product, see Section 9.2 in [28], shows us that the induced action of

the automorphism group Aut(C6) = µ2
6 o Σ3 on H0(ΩC6) has three irreducible

representations

V1,1,1 , V2,1,0 , V3,0,0 ,

where V1,1,1 is of dimension 1 and generated by the form

xyz · ω ,

the space V3,0,0 is 3-dimensional and spanned by the forms

x3 · ω , y3 · ω , z3 · ω ,

and, finally, the space V2,1,0 is of dimension 6 and spanned by the following six

linearly independent forms

x2y · ω , y2x · ω , x2z · ω , z2x · ω , y2z · ω , z2y · ω .

Following [7] we consider the elliptic curve with complex multiplication

E = {v2w = u3 − w3}
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in P2 with coordinates u, v and w. Affinizing C6 by z and E by w, we also have

the affine curves

W6 = C6 ∩ A2 = {x6 + y6 = −1}
in A2 with coordinates x, y, and

U6 = E ∩ A2 = {v2 = u3 − 1}

in A2 with coordinates u, v. As in loc.cit., we consider three regular morphisms

ϕi : C6 → E , i = 1, 2, 3 ,

given on the affine parts by the formulas

ϕ1 : W6 → U6 ,

ϕ1(x, y) = (−x2, y3)
and

ϕ2 : W6 → U6 ,

ϕ2(x, y) =

(
y4

3
√
4x2

,
x6 − 1

2x3

)
.

If we change the coordinates in A2 to have E ∩A2 being defined by the equation

u′3 + v′3 + 1 = 0 ,

then we also have a third morphism

ϕ3 : W6 → U6 ,

ϕ3(x, y) = (x2, y2) .

The generator

τ ∈ H0(ΩE)

is locally represented by the form du
v

in the (u, v)-coordinates, and by the form
du′

v′2
in the (u′, v′)-coordinates, so that we can loosely write

τ =
du

v
=
du′

v′2
.

Straightforward computations give

ϕ∗
1

(
du

v

)
= −2xdx

y3
= −2xy2 · ω ∈ V1 = V2,1,0 ,

ϕ∗
2

(
du

v

)
= − 3

√
24y3 · ω ∈ V2 = V3,0,0

and

ϕ∗
3

(
du′

v′2

)
= 2xyz · ω ∈ V3 = V1,1,1 ,

see page 108 in [7].

To be in accordance with the notation of Section 4, let

G = Aut(C6)

be the whole group µ2
6 o Σ3, let

G1 = Σ3 , G2 = {(1, 2, 3), (2, 1, 3), (3, 2, 1)} ⊂ Σ3
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and

G3 = {id} ∈ Σ3

be three subsets in Σ3, where the latter is considered as a subgroup in G. Then

the six global sections

σ∗ϕ∗
1(τ) , σ ∈ G1 ,

generate the 6-dimensional vector space V1, the three global sections

σ∗ϕ∗
2(τ) , σ ∈ G2 ,

generate the 3-dimensional vector space V2, and

ϕ∗
3(τ)

generate the 1-dimensional space V3. As in Section 4, let

f1 , . . . , f6

be the six regular morphisms ϕ1σ from C6 onto E, where σ runs the set G1,

arbitrarily indexed, let

f7 f8 , f9

be the three regular morphisms ϕ2σ, where σ runs the set G2, also indexed in an

arbitrarily way, and let

f10

be the last morphism ϕ3. If

ni = deg(fi)

then

ni = 6 for i = 1, . . . , 6 ,

ni = 24 for i = 7, 8, 9

and

n10 = 4 .

Then we have 10 × 10 projectors Θij, and the corresponding transcendental

motives Tij, i, j ∈ I, where I be the set {1, . . . , 10}. Since g = 10, it is easy to

compute that

dim(M2
tr(C6 × C6)) = 200 .

Applying Theorem 21, we obtain that the transcendental motive M2
tr(C

2
6) is

integrally indecomposable.

Now we are ready to prove Theorem B in Introduction.

Theorem 22. Let S6 be the Fermat sextic in P3 given by the equation

t6 + u6 + v6 + w6 = 0

in P3. The transcendental motive M2
tr(S6) is integrally indecomposable.

Proof. By Lemma 13, without loss of generality one can assume that the ground

field k contains the extension Q[
√
−1]. Recall the following well-known construc-

tion from [32]. Let x1, y1, z1 be homogeneous coordinates in P2, let x2, y2, z2 be

homogeneous coordinates in a second copy of P2, and let ε be a 6-th root of −1.

Consider the rational map

φ : C2
6 99K S6
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given by the quadratic forms

[x1z2 : y1z2 : εx2z1 : εy2z1] ,

see page 98 in loc.cit. This rational map is not defined at 62 points (Ri, Rj),

where

Ri = (1 : −ϵi : 0)
is a point on C6 for each index i = 0, 1, . . . , 5. The composition of the blow up

C̃2
6 → C2

6

at the points (Ri, Rj) with the rational map φ is regular. The group µ6 acts on

C2
6 by the rule

ϵi((a, b, c), (a′, b′, c′)) = ((a, b, ϵic), (a′, b′, ϵic′)) ,

and the fixed point locus of this action is exactly the set of 62 points (Ri, Rj)

described above. This is why the action of µ6 extends to the action on the blow

up C̃2
6 . Moreover, the the quotient surface

S̃6 = C̃2
6/µ6

is smooth, see page 100 in [32]. Since the composition of the blow up morphism

from C̃2
6 to C2

6 with the rational map φ is regular and µ6-equivariant on source,

it induces a regular morphism from S̃6 onto S6, such that the diagram

C̃2
6

��

φ̃ // S̃6

��
C2

6

φ //______ S6

commutes. Here φ̃ is the quotient morphism, and the vertical morphism from

the right contracts 6 + 6 lines on the surface S̃6 into points on S6, so that S̃6 is

the blow up of the Fermat sextic S6 at 12 points, see Lemma 1.6 in loc.cit.

Let ∆̃0, ∆̃ and ∆ be the diagonal classes on the surfaces, respectively, S̃6, C̃
2
6

and C2
6 . Assume the motive M(S̃6) decomposes essentially, and consider two

essential mutually orthogonal idempotents Λ̃0 and Ξ̃0, such that

∆̃0 = Λ̃0 + Ξ̃0

in CH2(S̃6 × S̃6). The morphism

1

6
· Γφ̃ :M(C̃2

6) →M(S̃6)

has a section

Γt
φ̃ :M(S̃6) →M(C̃2

6) .

The correspondences

Π̃ =
1

6
· Γt

φ̃ ◦ ∆̃0 ◦ Γφ̃ ,

Λ̃ =
1

6
· Γt

φ̃ ◦ Λ̃0 ◦ Γφ̃ ,
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Ξ̃ =
1

6
· Γt

φ̃ ◦ Ξ̃0 ◦ Γφ̃ ,

induce the decomposition

(22) Π̃ = Λ̃ + Ξ̃ ,

and the corresponding splitting

MΠ̃ =MΛ̃ +MΞ̃ ,

whereMΠ̃ can be viewed as the image of the motiveM(S̃6) under the embedding

of M(S̃6) into M(C̃2
6).

Since C̃2
6 is the blow up of C2

6 at a finite collection of points, the motiveM(C̃2
6)

is a direct sum of the motive M(C2
6) and a finite number of copies of the Lef-

schetz motive L, and the transcendental motive M2
tr(C̃

2
6) can be identified with

the transcendental motive M2
tr(C

2
6). The correspondence Π̃ induces a correspon-

dence Π on C2
6 × C2

6 , and the decomposition (22) in CH2(C̃2
6 × C̃2

6) induces the

corresponding decomposition

Π = Λ + Ξ ,

of Π into two mutually orthogonal projectors in CH2(C2
6×C2

6)Q. Moreover, there

exist integral correspondences

Π0 , Λ0 , Ξ0 ∈ CH2(C2
6 × C2

6) ,

such that

Π =
1

6
· Π0 , Λ =

1

6
· Λ0 and Ξ =

1

6
· Ξ0 .

Let

MΠ =MΛ ⊕MΞ

be the corresponding splitting in C(k)Q.
The surface S6 is ρ-maximal, see Proposition 7 in [7], whence

dim(M2
tr(S6)) = 20 .

The action of µ6 on C̃
2
6 extends the action of µ6 on C

2
6 , and S̃6 is the quotient of

C̃2
6 by µ6. The standard properties of group action on algebraic cycles (see, for

example, Proposition 2.4 in [34]) give us that the motive M(S̃6) is µ6-invariant

inside M(C̃6). The numerical and homological equivalence for codimension 2

algebraic cycles with coefficients in Q coincide, see [25]. The group H1(C6) splits

into g = 10 direct summands corresponding to the morphisms fi, i = 1, . . . , 10.

Using the Künneth formula for the appropriate Weil cohomology theory H∗, one

can easily show that the action of µ6 on the numerical motives T̄ij preserve the

diagonal sum ⊕g
i=1T̄ii. Since the dimension of the latter is 20, and the motive

M̄Π is µ6-invariant inside M̄
2
tr(C

2
6), we obtain that

M̄Πtr =
10⊕
i=1

T̄ii

inside M̄2
tr(C

2
6).

In other words, the transcendental motive of the surface S6 lives at the diagonal

of the transcendental motive of the product C6 × C6, if we divide the relevant
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projectors by 6. Moreover, since the motiveM(C2
6) is an integral direct summand

of the motive M(C̃2
6), it follows that there are two integral correspondences

Φ0,Ψ0 ∈ CH2(C2
6 × C2

6)

such that the correspondences

Φ =
1

6
· Φ0 , Ψ =

1

6
·Ψ0

are mutually orthogonal idempotents in CH2(C2
6 × C2

6)Q,

∆ = Φ +Ψ ,

and the splitting

M̄2(C2
6) = M̄Φtr ⊕ M̄Ψtr

cuts out the diagonal ⊕10
i=1T̄ii in to two non-zero components.

It means, that we are exactly in Case 1 of the proof of Theorem 21. The

only difference is that the mutually orthogonal idempotents Φ and Ψ cutting

the diagonal ⊕10
i=1T̄ii in to two nontrivial pieces are not integral but rather the

divisions of integral correspondences by 6.

Using Lemma 1 and acting in the same way as in Case 1 of the proof of

Theorem 21, we obtain four subsets

UΦ , UΨ , WΦ , WΨ ⊂ I2 ,

where

I = {1, . . . , 10} ,
I2 = I × I ,

I2 = UΦ ∪ UΨ =WΦ ∪WΨ

the unions are disjoint, such that

(23) 3 · id = (2eWΦ
+ eUΨ

) + (2eWΨ
+ eUΦ

) ,

(24) 2eWΦ
+ eUΨ

=
1

6
· a ,

(25) 2eWΨ
+ eUΦ

=
1

6
· b ,

and the endomorphisms a and b are integral endomorphisms of the Jacobian J .

For simplicity of notation, let U and W be the preimages of UΨ and WΦ

respectively under the diagonal map from I to I2, and let W ′ = I r W and

U ′ = I r U . The equalities 23, 24 and 25 can be now re-written as

(26) 3 · id = (2eW + eU) + (2eW ′ + eU ′) ,

(27) 2eW + eU =
1

6
· a ,

(28) 2eW ′ + eU ′ =
1

6
· b ,

Let also

U=24 = {i ∈ U | ni = 24}
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and, similarly,

U ′
=24 = {i ∈ U ′ | ni = 24} .

Now, since I2 is the disjoint union of U and U ′, at least one of the sets U=24

or U ′
=24 is nonempty. Suppose first that they both are nonempty. Then, since

all together there are 3 idempotents ei with ni = 24, it follows that either U=24

or U ′
=24 consists of one element, say

U=24 = {7} .

In that case (27) yields

2eW +
1

24
· e07 =

1

6
· a .

Multiplying both sides by 24, we obtain the eqiality

e07 = 4 · a− 2 · 24 · eW .

Since ni divides 24 for any index i ∈ I, we obtain that the norm-endomorphism

e07 is divisible by 2 in End(J), which contradicts the criterion 5.3.4 in [8].

Therefore, one out of the two sets U=24 or U ′
=24 consists of three numbers 7, 8

and 9, and the second one is empty, say

U=24 = {7, 8, 9} and U ′
=24 = ∅ .

Let

A = {i ∈ U | ni = 4 or 6}
and

B = U=24 = {i ∈ U | ni = 24} .
Then

2eW + eA + eB =
1

6
· a ,

which implies

24 · 2 · eW + 24 · eA + 24 · eB = 4 · a .
As ni divides 24 for any index i ∈ I, and the result of division of 24 by 4 or 6 is

even, the latter equality yields

(29) e07 + e08 + e09 = 2c

for some c from End(J).

Next, for any two indices i and j from I, the morphisms

fi : C → Ei and fj : C → Ej

induce a morphism

fij : C → Ei × Ej .

The image Cij of the morphism fij is a smooth projective curve of genus 2 whose

Jacobian is isogenous to Ei × Ej. Let eij be the uniquely defined symmetric

idempotent in EndQ(J) corresponding to the factor Ei × Ej under the isogeny

between J and E1 × . . . E10 (see Theorem 5.3.2 in [8]). Then

eij =
1

nij

· e0ij ,
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where e0ij is the norm-endomorphism of the abelian subvariety Ei +Ej inside J ,

and

nij = deg(fij) .

Clearly, nij divides both ni and nj.

Since

eij = ei + ej

in EndQ(J), we obtain

1

nij

· e0ij =
1

ni

· e0i +
1

nj

· e0j .

Suppose that ni equals nj. In such a case the latter equality implies that

m · e0ij = e0i + e0j ,

where m is the quotient of n = ni = nj by nij. Since nij is strictly smaller than

n, it follows that m > 1.

This happens when i and i are two indices from the set {7, 8, 9}. For example,

(30) e07 + e08 = m · e078
and m divides 24. If m is even, then (29) and (30) imply that e9 is divisible by

2 in End(J), which contradicts to 5.3.4 in [8]. Therefore, m is odd. Since m

divides 24, we see that m must be 3, and we obtain

e07 + e08 = 3 · e078 .

Similarly,

e07 + e09 = 3 · e079
and

e08 + e09 = 3 · e089 .
Solving the system of equations e07 + e08 = 3 · e078

e07 + e09 = 3 · e079
e08 + e09 = 3 · e089

with regard to e07, e
0
8 and e09, we obtain

(31) 2 · e08 = 3 · w ,

where

w = e078 − e079 + e089

in End(J). Dividing (31) by 24 yields

2 · e8 =
1

8
· w .

Multiplying by 8, we obtain

16 · e8 = w ∈ End(J) .

This contradicts to Proposition 12.1.1 in [8]. This finishes the proof of the theo-

rem.
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6. Two motivic conjectures and cubic hypersurfaces in P5

In the previous sections we gave the definition of essential indecomposability

of the Chow motive of a smooth projective variety, which can be viewed as

integral (in)decomposability of the transcendental motive in case of a smooth

projective surface over a field. Then we showed examples of surfaces whose

transcendental motive is rationally and hence integrally indecomposable. These

are abelian surfaces isogenous to the self-products of elliptic curves with complex

multiplication (Proposition 14), algebraic K3-surfaces whose motives are known

to be finite-dimensional, such as the Fermat or Weil quartic surface S4 in P3, all

in characteristic 0, see Proposition 15 and Remark 16. We proved Theorem 21

(Theorem A in Introduction) leading to an explicit example of a surface, the self-

product of the Fermat curve of degree 6, whose motive is rationally decomposable

but integrally not. Although in the latter example we used the fact that the

surface has maximal Picard rank, we do not think that this is essential regarding

the integral indecomoposability property ofM2
tr(S). Finally, we proved Theorem

B which asserts that the transcendental motive of the Fermat sextic in P3 is

also integrally indecomposable. The latter striking example suggests that the

following motivic conjecture may be true.

Motivic indecomposability conjecture. The transcendental motive

of a smooth projective surface over a field of characteristic 0 is integrally

indecomposable.

This is, of course, a motivic analog of the Hodge-theoretic indecomposability

conjecture due to Kulikov, [24], which is known to be false for the Fermat sextic

in P3, see [2].

We will also need another motivic conjecture due to Kimura and O’Sullivan,

which asserts that all motives in C(k)Q are finite-dimensional, see [1]. Notice

that this conjecture is verified only for motives of abelian type, i.e. objects of

the full subcategory in C(k)Q additively and tensorially generated by motives of

curves, see [22]. Our aim is now to show that if the motivic indecomposability

conjecture is true, and if the motives of all smooth projective surfaces are finite-

dimensional, i.e. the Kimura-O’Sullivan conjecture is true for surfaces, then a

very general cubic fourfold in P5 is not rational.

So let X be a smooth cubic fourfold hypersurface in P5 over an algebraically

closed field k of zero characteristic. Since deg(X) < 5, the hypersurface X is

rationally connected, whence

CH0(X)Q = Q .

Fix a point P0 on X. Then

π0 = [P0 ×X] ,

π1 = 0 ,

π2 =
1

3
· γ3 × γ ,

π3 = 0 ,
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π4 = ∆X −
8∑

i=0
i̸=4

πi (no explicite construction) ,

π5 = 0 ,

π6 =
1

3
· γ × γ3 ,

π7 = 0

and

π8 = [X × P0] .

This gives the corresponding splitting

M(X) = 1⊕ L
2 ⊕M4(X)⊕ L

6 ⊕ L
8

in C(k)Q.
Let ρ2 be the rank of the algebraic part in H4(X), for the smooth cubic

hypersurface X in P5. Choosing 2-cycles

D1, . . . , Dρ2 ,

and their Poincaré dual cycles

D′
1, . . . , D

′
ρ2
,

exactly in the same way as we do it for surfaces, one can easily construct the

splitting

M4(X) =M4
alg(X)⊕M4

tr(X) ,

in C(k)Q, where

M4
alg(X) = L

⊕ρ2 ,

i.e.

π4
alg =

ρ2∑
i=1

[Di ×D′
i] .

Clearly, each copy of the Lefschetz motive L is the motive (X,Di ×D′
i, 0), and

the transcendental motive M4
tr(X) is given by the projector

π4
tr = π4 − π4

alg .

Let also

π4
prim = ∆X − 1

3
·

4∑
j=0

γ4−j × γj ,

and let

M4
prim(X) = (X, π4

prim, 0)

be the primitive part of the motive M(X), see [23]. If the cubic X ⊂ P5 is very

general, the results in [39] show that

ρ2 = 1 ,

whence

M4
prim(X) =M4

tr(X) .

Then, for a very general cubic X, we get

M4(X) = L
⊕ρ2 ⊕M4

prim(X) .
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Moreover, if X is very general, then

EndQ(H
4(X)prim) = Q ,

i.e. the rational Hodge structure on the middle primitive cohomology is inde-

composable, see Remark 2.6(a) in [38] and Lemma 5.1 in [37].

Notice that if we could know that the motive M(X) is finite-dimensional, the

absence of phantom submotives in finite-dimensional motives would guarantee

that the motive M4
tr(X) is rationally, a fortiori, integrally indecomposable.

Theorem 23. If the motivic indecomposability conjecture is true, and if the

motive of any smooth projective surface is finite-dimensional, then a very general

cubic fourfold hypersurface in P5 is not rational.

Proof. So, let againX be a very general cubic hypersurface in P5 over C. Suppose
that X is rational, and consider the corresponding birational map

P4 99K X .

Resolving the indeterminacy locus, we get a regular dominant morphism

f : Y → X

over k, where Y is obtained by a chain of blow up operations at points, curves

and surfaces, starting from P4.

A crucial geometric argument is this. Let

F = F (X)

be the Fano variety of the cubic X. By the result of Voisin, there exists a surface

F0 ⊂ F ,

such that any two points on F0 are rationally equivalent on the fourfold F , see

[35]. Moreover, for any line L on X, such that its class [L] in F sits on the surface

F0, the triple line 3L is rationally equivalent to the third intersection power,

[3L] = γ3 ,

of the general hyperplane section γ of the cubic X, see Lemma A.3(v) in [29]. It

follows that the class γ of the hyperplane section in CH1(X) is divisible by 3.

Therefore, the splitting

M(X) = 1⊕ L
2 ⊕M4(X)⊕ L

6 ⊕ L
8

is integral.

The morphism f is generically 1 : 1 and dominant. Therefore, the composition

Γf ◦ Γt
f is the identity automorphism of M(X) in the integral category C(k). In

other words, f yields the embedding

f ∗ = Γt
f :M(X) →M(Y ) ,

which integrally splits M(X) from M(Y ), and therefore

M(Y ) = f ∗(M(X))⊕N

in C(k), where f ∗(M(X)) is the submotive in M(Y ) cut out by the projector

Γt
f ◦ Γf on Y .
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Suppose we sequentially blow up s0 points, s1 curves C1, . . . , Cs1 and s2 sur-

faces S1, . . . , Ss2 over k. Then the latter motive splits integrally as

M(Y ) =M(P4)⊕M0 ⊕M1 ⊕M2 ,

where

M0 = ⊕s0
i=1(L⊕ L

2 ⊕ L
3) ,

M1 = (⊕s1
i=1M(Ci))⊗ (L⊕ L

2)

and

M2 = ⊕s2
i=1M(Si)⊗ L .

As it was shown in [24], there exists an index i0 ∈ {1, . . . , s2}, such that the

pullback under the morphism f of the transcendental Hodge structure of the

cubic X, being twisted by 1, is an integral sub-Hodge structure in the tran-

scendental Hodge structure of Si0 . More importantly, this integral sub-Hodge

structure does not equal to the whole transcendental Hodge structure of Si0 .

Next, the integral splitting

(32) M̄(Y ) = f ∗(M̄(X))⊕ N̄

induces the integral splitting

(33) M̄2
tr(Si0) = (f ∗(M̄4

prim(X))⊗T)⊕ (N̄i0 ⊗T)

in the category N(k)Q.
The motives of curves are finite-dimensional by Theorem 4.2 in [22]. Since

we assume that the motives of smooth projective surfaces are finite-dimensional,

we have in particular that the motives M(Si) are all finite-dimensional. Then

the motive M(Y ) is finite-dimensional, and, of course, the motive M(X) is also

finite-dimensional.

As the cubic X is very general in P5,

M̄4
tr(X) = M̄4

prim(X) ,

and this motive is indecomposable by Lemma 5.1 in [37] and the absence of

phantom submotives in finite-dimensional motives, which is due to Kimura’s

Proposition 7.5 in [22]. Lemma 3 in [24] gives that

N̄i0 ̸= 0 ,

so that both summands in (33) are nontrivial.

In terms of correspondences, the splitting (32) induces an essential decompo-

sition

∆̄ = Λ̄ + Ξ̄

of the diagonal class ∆̄ into two orthogonal idempotents in N2(Si0 × Si0), such

that

π̄2
tr(Si0) = Λ̄tr + Ξ̄tr

in EndQ(M̄
2
tr(Si0)),

f ∗(M̄4
prim(X))⊗T =MΛ̄ and N̄i0 ⊗T =MΞ̄
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in N(k)Q.
Since the motiveM(Si0) is finite-dimensional, all numerically trivial endomor-

phisms of M(Si0) are nilpotent by Proposition 7.5 in [22]. The standard lifting

idempotent property gives that there exist two orthogonal idempotents

Λ′ , Ξ′ ∈ CH2(Si0 × Si0) ,

such that

Λ̄′ = Λ̄ , Ξ̄′ = Ξ̄

and

∆ = Λ + Ξ

in CH2(Si0 × Si0). Therefore, we may assume that Λ and Ξ are orthogonal

idempotents from the very beginning. In such a case,

π2
tr(Si0) = Λtr + Ξtr

in EndQ(M
2
tr(Si0)), and we obtain the corresponding integral decomposition

M2
tr(Si0) =MΛ ⊕MΞ

in C(k)Q, such that

M̄Λ =MΛ̄

and

M̄Ξ =MΞ̄ .

Since these two numerical motives are nontrivial, we get a contradiction with the

indecomposability assumption.

Remark 24. As it was rightly pointed out to me by Alexander Kuznetsov and

Mingmin Shen, it is essential that in Theorem 23 we have to assume motivic

finite-dimensionality and integral indecomposability of M2
tr(S) for all smooth

projective surfaces S over C, not only for surfaces in P4. The reason for that is

that when we sequentially blow up points, curves and surfaces, starting from P4,

each next centre of blowing up is contained in the result of the preceding blow

up. Therefore, even if the next center is a surface S, a priori S can be contained

in the exceptional divisor of the preceding blow up at a point or curve, in which

case the projection of S to P4 is not a surface in P4.
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